Highly Scalable Metadata
Search and Indexing

Ethan L. Miller
Andrew Leung ¢ Tim Bisson” * Minglong Shao™ * Shankar Pasupathy”
Storage Systems Research Center

University of California, Santa Cruz
‘NetApp

-
pdasi
Engineering W

10100110110111100100065SS o
0101111101101111101030:4-0SC08 e X
1010011001011001100000 T EFOOSSEGER0-1
10001000100100101110 1 FOTOI
$01101000111001000TT0O ORI

Challenge:
scalable search mechanisms

Indexing is a critical issue

Speed and effectiveness of search limit the usability of very large scale
storage systems

Very large scale indexes are often resource-intensive
Google and Yahoo have web-scale indexes, but they use thousands of
processors to do it!
Performance is high (memory resident indexes)

Indexing can take advantage of locality
Users typically aren’t searching over the whole file system
Users may not have permissions to see everything
Challenges
Building indexes that scale
Building less resource-intensive indexes
Building indexes that leverage locality
Incorporating security into indexes
Integrity: failure of a centralized index can be difficult to recover from

Baskin
Engineering W
2

Challenge:
gathering metadata for indexes

Indexes are only as good as the information that goes

into them
Critical types of metadata include
Content

- Domain-specific techniques for gathering it
- May need domain-specific search mechanisms

Provenance
- How was the data generated!?
- On what data and programs does this file depend?

Challenges
How can provenance be tracked efficiently!?
How can domain-specific metadata be handled?

- Gathered?

pdsi
- Indexed as part of the file system?

Baskin
Engineering W
3

Challenge:
data mining in mass storage

Large storage systems contain a lot of useful data
Can be difficult to fully utilize

Traditional data mining techniques may not be

effective
Infeasible to read out the entire storage system for data
mining

Two potential approaches
Index the data when it’s written to storage, and use the
indexes for mining
Distribute computation to the storage devices, allowing
them to run in parallel

Baskin
Engineering W
4

Our approach:partitioned indexes

Break up single large index into many smaller indexes
Each subindex covers a manageable amount of data
Individual subindexes can be searched quickly
Individual subindexes can be rebuilt after corruption (or
to reflect incremental changes)

Problem: can’t search all subindexes for every query
No better than what we do today (and maybe worse)

Problem: subindex search needs to be efficient
Can’t cache all subindexes in memory

Leverage locality?
pdsi

Baskin
Engineering W
5

Spyglass design

Partition file system hierarchy P/v\
by SUbtree e}eur\li eIm dlstmeta pergank include
Each subtree is an independent . L
. :“r-—f __,__/ r— Spyglass
subindex /, ‘ : ,' oxr

Summarize contents of each .

subindex @ , ===
Quickly rule out entire T{TZITS 181 “T_.zd " g

CTEC O EC m omc Owc)

subindexes that can’t satisfy the Baseline Incrementa
index indexes
query
Log incremental changes ... hashie xensiorymodb__

. . / \
Rebuild index when thereare {1 o 1 1 0o 1 = "0 1}~
R A N A

v vy
“enOUgh” Changes doc xls ¢ py pl h ppt mov
. . . ppt iPg
Integrity is much easier hash(iie size)
. . . 1 1 0 1 0 0 1 1
Rebuild subindex, not entire [; TR R S i ;J
IndeX <1 1-4 5-31 32— 128- 256- 100MB- >500MB

127 255 511 500MB Baskin
3 Engineeﬁngw

Current status

Prototype implemented for attributes
File size, type, owner, etc.
Content being done now...
Used k-d trees for individual indexes
Straightforward to optimize tree structure for each individual
subtree
Recently-accessed subtrees cached in memory
- Only takes a few milliseconds to read and search a tree

Implementation tested using 300 million files crawled at
a “large storage company”
Locality really helps!

Performance is very good
Compared against standard databases

pdsi . .
Queries on Spyglass were 10-6000 times faster!

Baskin
Engineering W
7

Ongoing research

Extending attribute-based search to content

Will locality help as much?

Will compression help to reduce the size of the indexes?
Scaling indexes to trillions of files

Existing systems (databases or otherwise) can’t handle

such large systems without massive amounts of hardware

Will summarization work with millions of indexes?
Non-hierarchical file systems

Use similarity (or something else) to group files!?

- Talk on this earlier today

Extending indexing to archives

pdsi

Baskin
Engineering W
8

